
System Behaviour Description Language
SBDL (pronounced ‘speedle’) captures the essence of system composition and behaviour in a
simple yet powerful domain-specific language, allowing that essence to be placed close to

where it matters. [HTML] [PDF]

contact@sbdl.dev

1.13.1 (SBDL Compiler), 25.6 (SBDL Language) [#694749b]

Contents
Overview . 1
Quick Start . 3
SBDL Language . 6
Metamodel Reference . 18
SBDL Compiler . 27
License . 32
FAQ and Issue Reporting . 32

Interested in a short introduction to SBDL? Have a look at this high-level overview presentation.

Overview
SBDL models system behaviour as a set of related, typed elements, where each element describes a
particular facet of system design and the specified relationships between those elements constitute
overall system behaviour.

The language. . .

sbdl_purpose is requirement { description is "Let's make defining system models quick and easy" }

The ‘System Behaviour Description Language’ (SBDL) is a Domain-Specific Language designed for the
terse and locally-expressed attribution of system behaviour by way of minimalist Domain-Specific Model.
More elaborately put: SBDL allows for the engineer to define key behavioural properties of a system, the
relationship between then, and to place those properties close to where their definition is realised. To this
end, SBDL is intended to annotate existing design and development materials; this is in contrast to the
creation of separate (and often unrepresentative) design materials.

Typical usecases for SBDL include:

• Capturing the design of a system as a light-weight, verified model
• Embedding and coupling model information close to where it is defined/realised
• Easily applying change and revision control to the model (e.g. Git et al)
• Automating the generation of design output material
• Integrating design risk analysis (FMEA) with model evolution

1

https://sbdl.dev
https://sbdl.dev/sbdl.pdf

Figure 1: SBDL Venn Diagram of Influences

Figure 2: Overview of SBDL

2

In the near future:

• Dynamic trace model verification: verify a set of dynamic log trace elements against a model description
• Inclusion of more formal aspects, such as OCL, process algebras. . .
• AI scrutability: use SBDL to capture the design structure an decisions made by artificial intelligence

when realising complex implementations
• Automate design review and risk analysis: describe a design in SBDL and have an AI system offer an

automated design critique and risk analysis proposal

The compiler. . .

The SBDL Compiler allows the engineer to extract and verify the aforementioned behavioural model, and
also generate various different output materials, including:

• architectural models (UML/SysML),
• requirement models (SysML),
• function models (UML/SysML)
• state models (UML/SysML)
• usecase models (UML/SysML)
• Failure Mode and Effect Analysis (OpenFMEA),
• traceability matrices (including test coverage)
• template-defined documents (Jinja) and more.

Using the SBDL compiler, behavioural annotations can be placed in almost any form of design material where
textual-input is allowed, including: source code, markdown, word processor documents, issue management
systems, and so on. Such embedded definitions can also be coupled with syntactic artefacts of the containing
language or material.

In addition, the compiler is extensible, such that users may make programmatic use of SBDL definitions in
their own applications.

Quick Start
Looking for a syntax introduction? Or perhaps a reference of the Metamodel?

To get started with SBDL, you’ll need at least the SBDL compiler and its dependencies. It’s also useful to
fetch and build the example project; both to familiarise yourself with the expressive form of SBDL, and also
to check that your environment is working correctly.

Get the compiler

Prerequisites The SBDL compiler is a Python project, and therefore requires that Python is installed*.
The SBDL compiler itself is cross-platform (Linux, Windows . . .).

Install SBDL Compiler The SBDL compiler itself can be installed using PIP:

python -m pip install https://sbdl.dev/sbdl-package.tar.gz

This will install the development version of SBDL and its dependencies.

You can then execute the SBDL compiler as follows:

python -m sbdl -h

The ‘-h’ switch above displays the help output.

If the PIP installation location is in your path (as is the case by default on Linux) then calling the SBDL
compiler can be further abbreviated to simply:

3

https://www.python.org/downloads/

sbdl -h

*Standalone SBDL Compiler Currently the standalone build is available for Linux (x86-64) only.

In case you’d like to simply fetch and use SBDL as a standalone executable and not as a python project,
there is a self-contained build of the compiler available. This includes all necessary Python dependencies in a
single file.

Linux (x86-64)

wget https://sbdl.dev/sbdl-standalone-linux-x86-64 -O sbdl
chmod ugo+x sbdl
./sbdl -h

External Dependencies Several of the output (UML) models use PlantUML for rendering and therefore
require that it is installed and available in the path. PlantUML can be installed manually from the source or,
as in most Linux installations, from a package manager.

In Debian/Ubuntu, for example:

sudo apt install plantuml

Build the example

The SBDL example is a synthetic project contrived to demonstrate the basics of the SBDL language and its
application within a build structure. It resides in its own repository: you can find the repository here.

To build the SBDL example you will need at least the SBDL compiler and CMake. In order to build the
optional (but recommended) parts of the example, you will also need PlantUML and a C++ compiler.

The basic steps to build the example are as follows:

git clone 'https://sbdl.dev/sbdl-example.git'
cd sbdl-example
cmake -S . -B build
cmake --build build

After the build completes, there are a set of output files available in the ‘build’ directory (including: a
generate document, model images, traceability matrices, OpenFMEA file . . .). You can view the pre-compiled
output here.

Demonstration

Step-by-step demonstration of SBDL installation and example testing.

(interactive-demo-here)

Syntax Highlighting & More

A Visual Studio Code Extension is available that provides syntax highlighting and GUI integration of compiler
functions.

Download and install the SBDL Visual Studio Code Extension.

After installation, syntax highlighting is available immediately.

Right clicking in the explorer panel exposes the available compiler shortcuts.

4

https://plantuml.com/download
https://sbdl.dev/sbdl-example.git
https://sbdl.dev/example
https://sbdl.dev/example
sbdl-extension.vsix

Figure 3: VSCode Syntax Highlighting

Figure 4: VSCode Explorer Context Menu

5

Depending on the host system, it may be necessary to customize the extension configuration. The configuration
can be found in: File->Preferences->Settings->Extensions->SBDL

Figure 5: VSCode Extension Configuration

Configuration options

Compiler_command: Command to invoke SBDL. This can be as simple as ‘sbdl’, ‘python -m sbdl’ or, if there
are multiple python versions installed, ‘py -XX.YY -m sbdl’.

Plantuml_command: Command to invoke PlantUML (external tool). This might be simply ‘plantuml’ or
‘java -jar /path/to/jar’.

SBDL Language
The SBDL language is terse, simple and easy for humans to read. It is intended to be written directly but is
also amenable to automation as a target of other tools.

Model Based SBDL, at its core, captures the relationships between different parts of a system’s domain
model. This includes static, dynamic and state based facets of a system, in addition to testing and
failure mode and effect analyses.

Declarative SBDL captures the structure and relationships of the elements of a system’s behaviour but
does not describe how they achieve target behaviour; it is a not a programming language.

Immutable SBDL elements are defined once, at a single location, and may not be modified thereafter.
Distributable SBDL definitions may reside in a dedicated SBDL source file but, importantly, they may

also be distributed as annotations within other design materials; such materials include source-code,
documents, requirement management systems . . .

Traceable Every SBDL definition has traceable relations and is traceable to a specific location of definition.

Semantics

The SBDL metamodel represents a system as a set of elements. Elements have an identifier, type, properties,
and may be related to one another. In this sense, the metamodel can be formally described as a coloured
graph, or network.

Elements, types, relations and properties Each system element has a particular type (e.g. aspect,
requirement, definition, interface, usecase . . .) and represents some facet of the system’s behaviour. Detailed
information about types can be composed into a system can be found in the Metamodel Reference.

6

Figure 6: Simple representation of SBDL model elements and relations

Each element may be related to other elements of the system in a typed way (not all elements may be related
to one another – only those relations which have a defined meaning).

Each element also has one or more properties, which define a characteristic of the given element. The most
basic property, available on all elements, is the textual description property; but different elements have
various properties which may be attached to them, depending on the element’s type.

All elements defined in SBDL are also implicitly spatially sensitive: their locality of definition is an automatic
property of the element, anchoring the element’s definition to the material location and its position within it.

The composition of all elements together constitutes the overall system behaviour description.

SBDL can capture hierarchical structuring, and relate the properties of the system to that structure. This
includes: static properties, dynamic behaviour, stateful behaviour, test definitions, and failure modes, along
with the more typical requirements and usecases.

Distributed Definition SBDL elements can be defined together in one place, like a conventional language
source file, but the intention (and power) of SBDL comes from the ability to embed individual SBDL element
definitions close the materials to which they are most relevant. For example, requirements may be defined
alongside where they are documented, while a software architecture decomposition may be defined (and
distributed throughout) the source code. This distributed definition is the power behind the aforementioned
implicit spatial locality of reference: where each element definition is coupled with the location of material to
which it is most closely related.

Syntax

Core Language (with examples)

The syntax of SBDL is designed to be straight-forward. SBDL content consists of a series of statements; the
most common of which is an element definition. An element definition specifies a named model element of a
specific model type, along with its properties and relations.

The general form of an SBDL definition is as follows:

sbdl_id is sbdl_type {
description is "something";
some_other_property is a,b,c;

}

Where sbdl_id is the name of the model element, sbdl_type is the type of the model element, and the entries
between the curly-braces define the properties and relations of that element (the semi-colon can be used as
an optional separator). Statements are intended to be expressed on a single line but may be broken over
several lines.

7

Consider the more concrete example below:

rocket_system is aspect { description is "Rocket Launch System" }
rocket_booster is aspect { description is "Booster Sub-System"; parent is rocket_system }
rocket_steering is aspect { description is "Steering Sub-System"; parent is rocket_system; related is rocket_booster }

The above definition set describes a structural decomposition using the ‘aspect’ type. In this case, a ‘Rocket
Launch System’ system is described along with two sub-systems: ‘Booster’ and ‘Steering’. The sub-systems
are related to the parent via the ‘parent’ relation; conversely, they could also have been related from the
parent’s perspective, using the ‘child’ relation. In addition, the rocket steering sub-system is adjacently
related to the rocket_booster system.

This simple model can be extended with some affiliated requirements:

system_requirement_1 is requirement { description is "The rocket shall launch..."; aspect is rocket_system}
booster_requirement_1 is requirement { description is "The rocket boster shall fire ..."; aspect is rocket_booster; parent is system_requirement_1}
steering_requirement_1 is requirement { description is "The rocket shall be steerable ..."; aspect is rocket_steering; parent is system_requirement_1}

Three named requirements are defined and associated with different decompositional aspects by the ‘aspect’
type relation.

The same structure can then be extended with, for example, a dynamic function:

launch_protocol is function { description is "Launch Sequence"; aspect is rocket_system; event is fire_booster,correct_course}
fire_booster is event { description is "Fire boosters"; aspect is rocket_booster }
correct_course is event { description is "Correct course trajectory"; aspect is rocket_steering }

The above defines a single function consisting of two events. Notably, the containing function definition
exploits the ordered nature of property definition lists (in this case to order to events).

And, finally, the defitions can be augmented with state information:

using { aspect is rocket_system }
rocket_launch is transition { description is "Rocket Launch" state is rocket_ready,rocket_in_motion event is fire_booster }
rocket_ready is state { description is "Rocket ready for launch" }
rocket_in_motion is state { description is "Rocket is in motion" }

Notice that the ‘rocket_launch’ transition uses the previously defined ‘fire_booster’ as the causal event of
the transition. The use of the ‘using’ statement affiliates all subsequent statements with the rocket_system
aspect.

Strings As shown in the examples, string properties are encapsulated within “double-quotes”.

Raw strings, which may contain unescaped double-quotes and preserve whitespace and new lines, can be
expressed within triple-backets:

[[[this is
a
raw

"string"
]]]

Stereotyping Elements and their relations may be extended with stereotypes. Stereotypes add additional
typing constraints and information.

Stereotypes are expressed by extending identifiers using a caret symbol (‘ˆ’).

The third line of the aspect definition example can be extended in this way:

8

rocket_steering is aspect { description is "Steering Sub-System"; parent is rocket_system; related is rocket_booster^controls }

Above, the relation to the rocket_booster sub-system is stereotyped to show that the rocket_steering
sub-system controls the rocket_booster (ˆcontrols). Useful stereotypes for relations between aspects include
‘inherit’ and ‘compose’, which will also be rendered canonically in a compiled aspect diagram.

An element definition itself can also be stereotyped. Consider the definition of a new aspect, particular to
software:

steering_firmware^software is aspect { description is "Steering control software"; parent is rocket_steering }

A new structural aspect is defined above (‘steering_firmware’) which is part of the rocket_steering subsystem
and, importantly, is stereotyped as software (‘ˆsoftware’).

Model Output Generation Using the SBDL compiler, the above SBDL statements can be aggregated
from distributed sources and verified for correctness. Several different model output views are available; a
selection of which are shown below.

Figure 7: Requirements Model View

Many additional views are available, and the expressive power of the views show can also be extended with
additional information. To see a more extensive treatment of the SBDL language, be sure to explore the
fuller SBDL example project.

Custom Types It is possible to create specialised type variants of the SBDL base types (described by
the metamodel). These specialised variants can be created using the ‘customtype’ keyword, extending the
semantics of the base type. A newly defined custom type can then be used in place of a base type name with
the usual syntax.

Custom types can (re)define:

9

Figure 8: Aspect Model View

10

Figure 9: Function Model View

11

Figure 10: State Model View

12

• the name of the type
• permitted relation types
• mandatory properties
• optional properties
• default values properties

Custom types can therefore be used to realise an equivalent of Profiles in UML/SysML.

Consider the following example:

customtype FunctionalElement is aspect {
relation_type is requirement;
required_property is UID;
optional_property is Rationale;
some_default_property is "Default text here";

}
new_functional_element is FunctionalElement { requirement is System_Requirement1; UID is "XXXX:YYYY" }

The statements above creates a new type called ‘FunctionalElement’ which is used to define an element
‘new_functional_element’ that:

• can be linked to an element of type ‘requirement’
• must have a property ‘UUID’
• may optionally have a property ‘Rationale’
• by default has a property ‘some_default_property’ with a default string assigned (which may be

overwritten)

Nested Statements (Parentage Shorthand) When elements have a hierarchical relationship (par-
ent/child) they may be expressed by nesting their associated statements. The nesting of statements creates
an implicit parenting relation from the nested element to its containing element.

The previous example snippet describing the aspect elements of the rocket system could be alternatively
expressed as follows:

rocket_system is aspect {
description is "Rocket Launch System"
rocket_booster is aspect { description is "Booster Sub-System" }
rocket_steering is aspect { description is "Steering Sub-System" related is rocket_booster }

}

Notice how the explicit referencing of parents is no longer required. Element nesting does not alter the scope
of element identifiers.

Relationship Operators (Relation Shorthand) A common necessity is establishing a relationship
between two adjacent input elements; for example:

element_a is aspect { description is "Example element a" }
element_b is requirement { description is "Example requirement 1"; aspect is element_a }
element_c is requirement { description is "Example requirement 2"; aspect is element_a }

Above, the two requirements are explicitly related to element a.

The relation operators ‘||’ and ‘~|’ provide a ‘syntactic sugar’ for achieving this with greater brevity than
explicitly specifying the named relations.

The ‘||’ operating implies a relation between two adjacent elements in the input. In the case of a chain of such
relations, the ‘~|’ operating implies a relation between the current input element and source of the relation

13

chain.

The example above could therefore be re-written as:

element_a is aspect { description is "Example element a" }
||
element_b is requirement { description is "Example requirement 1" }
~|
element_c is requirement { description is "Example requirement 2" }

Notice that the aspect relations are no longer explicitly specified in the requirement elements because they
are now implied by the subsequent relation operators.

Unit Scope Management / Namespaces SBDL facilitates scope and namespace management at the
level of compilation units (typically files).

Two basic mechanisms allow for this: the ‘using’ and ‘scope’ keywords.

example_aspect is aspect { description is "Example aspect" }
using { aspect is example_aspect }
scope { identifier is PackageName }
example_requirement1 is requirement { description is "Example requirement 1" }
example_requirement2 is requirement { description is "Example requirement 2" }

. . . is compiled to:

example_aspect is aspect { description is "Example aspect"; reference is -:2; }
PackageName::example_requirement1 is requirement { aspect is example_aspect; description is "Example requirement 1"; }
PackageName::example_requirement2 is requirement { aspect is example_aspect; description is "Example requirement 2"; }

using: applies the contained relations (in the case of the above: a relation to the rocket_system aspect) to
all subsequent element definitions.

scope: applies the namespace prefix (in the case of the above, element definition identifier) to all subsequent
element definitions.

Both using and scope can be reset/cleared to modify behaviour for further elements defined in the compilation
unit:

example_aspect is aspect { description is "Example aspect" }
using { aspect is example_aspect }
scope { identifier is PackageName }
example_requirement1 is requirement { description is "Example requirement 1" }
using { aspect is "" }
scope { identifier is "" }
example_requirement2 is requirement { description is "Example requirement 2" }

. . . is compiled to:

example_aspect is aspect { description is "Example aspect"; reference is -:2; }
PackageName::example_requirement1 is requirement { aspect is example_aspect; description is "Example requirement 1"; }
example_requirement2 is requirement { description is "Example requirement 2"; }

Relationship Hash Checks Often, two distantly defined elements have a critical relation. For example:

File A

some_requirement is requirement { description is "Some critical definition" }

14

File B

some_aspect is aspect {
description is "Highly dependent on the requirement"
requirement is some_requirement

}

It is possible that the content of elements in ‘File A’ may change independently of those in ‘File B’, without
any element identifiers being modified or removed. This would mean that, despite the content potentially
changing radically, compilation and first-order relation verificatin would not fail.

If such a relation has a strong semantic binding to the content of a definition, and compilation failure upon a
change would be desirable, a relation reference may be augmented with a hash value:

File B

some_aspect is aspect {
description is "Highly dependent on the requirement"
requirement is some_requirement~41575

}

Above, the ‘some_requirement’ relation has been extended with an SBDL element hash reference, using the
‘~’ relation operator. When ‘some_requirement’ is modified without a coordinated change to its relation
reference in ‘some_aspect’, compilation will fail.

Element hash values can be retrieved using the ‘query’ mode of the SBDL compiler or by simply entering an
arbutrary hash value in the relation reference and extracting the correct hash value from the subsequent
compilation error message.

Embedding statements SBDL definitions may be expressed together in an SBDL-native file or they
may be embedded as annotations within another file. Such other files might include design descriptions,
documents, source code etc.

Embedding SBDL in another file-type is as simple as prefixing the line with the SBDL directive indicator:
“@sbdl”.

For example, an additional event in the launch_protocol function could be defined in a (C++) source file as
follows:

CourseStatus SteeringFirmware::correctCourse (...)
{

// Correct the course based on the firmware algorithm output ...
// @sbdl update_course is event { description is "Correct course"; aspect is steering_firmware }
...

}

The SBDL compiler will extract such SBDL statements and include them in the compilation context.

Embedding Blocks (multiline) If syntactically permitted by the containing language, it is possible to
create SBDL ‘blocks’ – multiple lines of SBDL – embedded within the containing language, for example:

@sbdl-begin
test_elem is aspect { description is "..." }
another_elem is requirement { description is "..." }

@sbdl-end

This allows for the expression of multiple SBDL statements without the requirement that each line be prefixed
with ‘@sbdl’.

15

The restriction is, however, that every line in the block must be valid SBDL. This means the application of
embedded blocks is mostly useful for embedding within textual formats, such as Markdown and similar.

Directives and Cross-Referencing

Directives In addition to the core syntax of SBDL exists the concept of directives. A directive specifies
some additional specific behaviour (performed by the compiler), often returning content to the regular syntax.

Compiler directives are specified using square brackets and the at-symbol:

[@DIRECTIVE_NAME:argument1,argument2,argument...]

A list of available compiler directives can be found here.

Cross-Referencing Directives also allow for cross-referencing: referring to the properties of other named
elements in SBDL. For example:

some_requirement is requirement { description is "Defines and controls [@some_other_elem_id:description]" }

The above example will include, in the description of ‘some_requirement’ the description of the other named
element. This works for all properties of all elements.

Coupling to embedded definitions Directives permit the coupling of SBDL definitions to artifacts of
the containing environment/language. In the case of the example definition embedded into a C++ file, the
coupling might be as follows:

CourseStatus SteeringFirmware::correctCourse (...)
{

// Correct the course based on the firmware algorithm output ...
// @sbdl [@CFUNC] is event { description is "[@-LINE]" }
...

}

With these modifications, the embedded definition is refactored to the use the containing function name as
the SBDL identifier ([@CFUNC]) and will take the previous line as the description ([@-LINE]).

After defining this new event, it should be added to the appropriate position in the launch_protocol function.
This can either be done explicitly in the function itself or by using event-tree, where an event also entails its
child events:

correct_course is event { description is "Correct course trajectory"; aspect is rocket_steering; child is SteeringFirmware::correctCourse}

Custom Rule Definition

Work In Progress – custom rules and the Prolog extension are experimental and under active
development. The final syntax for accessing the Prolog subsystem may be slightly different in
later releases, but the rule syntax itself will not change.

It is useful to be able to specify custom rules in addition to those provided by the base metamodel of
the language. Such rules might include naming conventions, relation permissions (potentially over indirect
relations), additional type property constraints, and so on.

Such additional rules can be specified through the Prolog extension of SBDL.

During compilation of a set of SBDL files, the resulting elements are exposed to a Prolog environment as a
set of facts. Assertions can then be made, using the SBDL Prolog directives, to query these facts.

Combining these custom rules with custom types provides a powerful and adaptable type specification system.

16

https://en.wikipedia.org/wiki/Prolog

Fact Format Facts about elements are automatically exposed to Prolog with a uniform argument cardinality.
For reference, these take the Prolog form:

type_name(identifier('identifier'), stereotype('stereotype'), properties([description('description'), reference('...')]), relations([relation(type('...'), identifier('...'), stereotype('...'))]), parents([...]), children([...]), related([...])).

Consider the following SBDL statement:

base_element is aspect {
description is "base aspect"
child_element is aspect { description is "child aspect" }

}
test_requirement is requirement { aspect is child_element; description is "Test Requirement" }

In the Prolog environment, this is exposed as the following facts:

aspect(identifier('base_element'), stereotype('None'), properties([description('base aspect'), reference('test/test_prolog.sbdl4')]), relations([]), parents([]), children([]), related([])).
aspect(identifier('child_element'), stereotype('None'), properties([description('child aspect'), reference('test/test_prolog.sbdl6')]), relations([]), parents([relation(type('parent'), identifier('base_element'), stereotype('None'))]), children([]), related([])).
requirement(identifier('test_requirement'), stereotype('None'), properties([description('Test Requirement'), reference('test/test_prolog.sbdl8')]), relations([relation(type('aspect'), identifier('child_element'), stereotype('None'))]), parents([]), children([]), related([])).

All parsed model elements will be automatically available in the Prolog environment as facts of this form and
may subsequently be queried. It is not necessary to write the Prolog facts oneself.

Directives There are several compiler directives provided for interaction with Prolog, and the exposed ele-
ment facts, primarily: ‘PL_START’,‘PL_ASSERT’,‘PL_ASSERT!’, and ‘PL_COMMAND’. These directives
are detailed in the compiler directives section.

Rule Assertion Example In the example SBDL snippet, it could, for example be asserted that an element
with a particular identifier must exist.

Asserting such a query in Prolog, using the fact structure described previously, would look like:

aspect(identifier(child_element),_,_,_,_,_,_).

This can then be expressed in SBDL (by extending the SBDL snippet) as follows:

[@PL_START] # make the Prolog environment available (needed once anywhere in the input)
[@PL_ASSERT:TestAspectExists, aspect(identifier(child_element), _, _, _, _, _, _)] # assert the truth of a Prolog query

The ‘PL_ASSERT’ directive is called with two arguments: the descriptive name of the assertion and the
Prolog query itself.

When an element with an identifier ‘child_element’ does not exist, the SBDL will fail to compile, citing the
name of the failing assertion.

Of course, much more complex rules can be expressed in Prolog, but this is beyond the scope of this
documentation. Have a look at this online introduction to Prolog as a starting point.

Additional Syntax Notes

Bidirectional Relation Definition Relations between elements can, in most cases, be defined in either
direction (or both!) and have the same effect:

some_aspect is aspect { ... }
some_requirement is requirement { ... aspect is some_aspect }

Is equivalent to:

some_aspect is aspect { ... requirement is some_requirement }
some_requirement is requirement { ... }

17

https://lpn.swi-prolog.org/lpnpage.php?pagetype=html&pageid=lpn-htmlse1

Is also equivalent to:

some_aspect is aspect { ... requirement is some_requirement }
some_requirement is requirement { ... aspect is some_aspect }

Implicit Reference Property All statement defined in SBDL automatically acquire the ‘reference’
property when compiled. The reference property indicates the location of definition in terms of file-path and
line number. The reference property is useful in understanding where

SBDL-Native Files vs SBDL Embedded Syntax SBDL statements embedded within a parent file of a
different format/language must always be prefixed with the SBDL statement indicator:

@sbdl some_id is some_type { ... }

SBDL statements contained within an SBDL-native file (a file containing only SBDL statements) do not
need to be prefixed with the SBDL statement indicator. Instead, the file itself must begin with the SBDL file
indicator:

#!sbdl
some_id is some_type { ... }
diff_id is some_type { ... }

Multi-line Statements SBDL statements can be broken across multiple lines in SBDL-native files.
SBDL-nativefiles are essentially free-form with regards to whitespace and line breaks.

When SBDL is embedded inside another language file or format (embedded syntax), statements must be
explicitly broken across multiple lines, using the line continuation symbol: backslash (\).

@sbdl example_definition is requirement { \
description is "On a new line" \

}

Custom Properties Unguarded property names are only permitted when they are valid for the element
type being defined. Custom properties may, however, be specified ac hoc by using the custom-property-prefix
(‘custom:’) on a per element basis.

example_definition is requirement { description is "Something"; custom:my_property is "Some content" }

Formal Syntax A formal version of the SBDL syntax is captured as an EBNF, or ‘Railroad’, diagram.

Metamodel Reference
Element Types Overview

The type graph below illustrates the available definition types, their properties, and, by an edge between two
types, the valid relations which may be specified between them. Each type (its relations and properties) is
also elaborated upon in its own sub-section.

18

Figure 11: SBDL Syntax Diagram (short version)
19

Simplified Metamodel View (click for larger size)

Element Types & Semantics

The follow subsections describe the available definition types, their meaning, and their properties.

Each element type is intended for relations with entities of affiliated types: for example, all elements may
relate to an aspect, and failure modes may relate to a requirement, and so on. Together, these relations
constitute a typed graph which describes the system structure and behaviour. This typed graph of definitions
and relations can be used to generate many of output formats provided by the SBDL compiler.

Architecture Elements Architectural elements are used for specifying system decomposition. Such
decompositions may be according to different views/schemes. for example: logical/structural, functional . . .

aspect Element

Description:

Unit of system decomposition. May associate with a variety of perspectives: logical, functional . . .

Relations:

aspect•requirement•fmea:mode•fmea:effect•fmea:cause•fmea:control•fmea:detection•fmea:action-
control•fmea:action-detection•test•definition•realisation•function•event•state•transition•usecase•interface•trace•group•aspect•

20

sbdl-domainmodel.png

Properties:

description: [string] Descriptive body of text for the given element.

remark: [string] General remark or more extensive information.

tag: [string] Comma separated list of tags which indicate some property of the given element.

color: [string] Color associated with element.

child: [identifier] Hierarchical child of the given element.

related: [identifier] Indicates a related element.

parent: [identifier] Hierarchical parent of the given element.

requirement Element

Description:

Requirement (or acceptance criteria) definition. Describes an expected behaviour at the associated level of
abstraction.

Relations:

fmea:control•fmea:mode•fmea:cause•fmea:effect•aspect•test•definition•realisation•function•usecase•interface•

Properties:

description: [string] Descriptive body of text for the given element.

remark: [string] General remark or more extensive information.

tag: [string] Comma separated list of tags which indicate some property of the given element.

color: [string] Color associated with element.

child: [identifier] Hierarchical child of the given element.

related: [identifier] Indicates a related element.

parent: [identifier] Hierarchical parent of the given element.

usecase Element

Description:

Definition of a usecase within a particular abstraction of a the system.

Relations:

requirement•aspect•definition•function•

Properties:

description: [string] Descriptive body of text for the given element.

remark: [string] General remark or more extensive information.

tag: [string] Comma separated list of tags which indicate some property of the given element.

actor: [string] Indicates the name of an actor affiliated with the given element.

interface Element

Description:

Definition of an interface exposing behaviour externally from the given abstraction.

21

Relations:

requirement•interface•aspect•trace•definition•realisation•function•interface•

Properties:

description: [string] Descriptive body of text for the given element.

remark: [string] General remark or more extensive information.

tag: [string] Comma separated list of tags which indicate some property of the given element.

parent: [identifier] Hierarchical parent of the given element.

group Element

Description:

Syntactic group of model elements. Used only to structure model representation and facilitate filtering; has no
semantic implications for the model itself. May parent (contain) any other element type.

Relations:

aspect•

Properties:

description: [string] Descriptive body of text for the given element.

remark: [string] General remark or more extensive information.

tag: [string] Comma separated list of tags which indicate some property of the given element.

FMEA Elements Failure Mode and Effect Analysis (FMEA) elements are used to describe risks present
in a system, and the controls and actions mitigating them.

fmea:mode Element

Description:

Failure Mode. Describes the way in which a failure may occur, from the perspective of a requirement.

Relations:

requirement•fmea:effect•fmea:control•fmea:detection•test•fmea:action-control•fmea:action-detection•fmea:cause•aspect•trace•

Properties:

description: [string] Descriptive body of text for the given element.

remark: [string] General remark or more extensive information.

tag: [string] Comma separated list of tags which indicate some property of the given element.

detectability_post: [number] Numerical rating on the interval [1(best)..10(worst)] indicating quality of a
failure detection AFTER realisation of an improvement action.

child: [identifier] Hierarchical child of the given element.

detectability: [number] Numerical rating on the interval [1(best)..10(worst)] indicating quality of a failure
detection.

parent: [identifier] Hierarchical parent of the given element.

fmea:effect Element

22

Description:

Failure Effect defintion. Describes the consequence of a failure mode.

Relations:

requirement•fmea:mode•aspect•trace•

Properties:

description: [string] Descriptive body of text for the given element.

remark: [string] General remark or more extensive information.

tag: [string] Comma separated list of tags which indicate some property of the given element.

parent: [identifier] Hierarchical parent of the given element.

severity: [number] Numerical rating on the interval [1(least)..10(most)] indicating the severity of a failure
effect.

fmea:cause Element

Description:

Failure Cause. An underlying technical mechanism, scenario or sequence of events that may result in a failure
mode.

Relations:

requirement•fmea:mode•fmea:control•fmea:detection•test•fmea:action-control•fmea:action-detection•event•aspect•trace•

Properties:

description: [string] Descriptive body of text for the given element.

remark: [string] General remark or more extensive information.

tag: [string] Comma separated list of tags which indicate some property of the given element.

child: [identifier] Hierarchical child of the given element.

occurrence: [number] Numerical rating on the interval [1(infrequent)..10(always)] indicating the probability
of a failure cause occurring.

occurrence_post: [number] Numerical rating on the interval [1(infrequent)..10(always)] indicating the
probability of a failure cause occurring AFTER realisation of an improvement action.

fmea:control Element

Description:

Existing controls which are present to prevent a failure cause either from occurring or leading to its associated
failure mode.

Relations:

fmea:mode•fmea:cause•aspect•trace•requirement•

Properties:

description: [string] Descriptive body of text for the given element.

remark: [string] General remark or more extensive information.

tag: [string] Comma separated list of tags which indicate some property of the given element.

23

fmea:detection Element

Description:

Existing detections (tests) which are present to measure (before release) the occurence of a failure mode.

Relations:

fmea:mode•fmea:cause•aspect•test•

Properties:

description: [string] Descriptive body of text for the given element.

remark: [string] General remark or more extensive information.

tag: [string] Comma separated list of tags which indicate some property of the given element.

fmea:action-control Element

Description:

Necessary steps that remain to be taken in order to prevent the occurance of a failure cause or mode.

Relations:

fmea:mode•fmea:cause•aspect•

Properties:

description: [string] Descriptive body of text for the given element.

remark: [string] General remark or more extensive information.

tag: [string] Comma separated list of tags which indicate some property of the given element.

fmea:action-detection Element

Description:

Necessary steps that remain to be taken in order to increase the detectability of a failure mode.

Relations:

fmea:mode•fmea:cause•aspect•

Properties:

description: [string] Descriptive body of text for the given element.

remark: [string] General remark or more extensive information.

tag: [string] Comma separated list of tags which indicate some property of the given element.

Testing Elements Testing elements describe the implementation and coverage of tests (including dynamic
traces).

test Element

Description:

Instance of a test for a particular part of a design.

Relations:

requirement•definition•realisation•fmea:detection•fmea:mode•fmea:cause•aspect•

24

Properties:

description: [string] Descriptive body of text for the given element.

remark: [string] General remark or more extensive information.

tag: [string] Comma separated list of tags which indicate some property of the given element.

trace Element

Description:

A dyanmic occurance of element instance (for example, an event or failure cause). Intended to be embedded
within log files. Can be used to build and validate dynamic behaviour against the statically defined behaviour
model.

Relations:

fmea:cause•fmea:mode•fmea:effect•fmea:control•function•transition•event•state•interface•aspect•

Properties:

description: [string] Descriptive body of text for the given element.

remark: [string] General remark or more extensive information.

tag: [string] Comma separated list of tags which indicate some property of the given element.

Design Elements Design elements elaborate on the prescription and description of design decisions and
their technical concepts.

definition Element

Description:

Prescriptive definition of a particular aspect of design.

Relations:

requirement•function•state•usecase•interface•aspect•test•realisation•

Properties:

description: [string] Descriptive body of text for the given element.

remark: [string] General remark or more extensive information.

tag: [string] Comma separated list of tags which indicate some property of the given element.

realisation Element

Description:

Final realisation of a particular aspect of prescriptive design.

Relations:

requirement•definition•function•state•interface•aspect•test•

Properties:

description: [string] Descriptive body of text for the given element.

remark: [string] General remark or more extensive information.

tag: [string] Comma separated list of tags which indicate some property of the given element.

25

Dynamic Elements Dynamic elements describe and structure dynamic system behaviours, such as
functions and events.

function Element

Description:

Definition of a function.

Relations:

event•function•usecase•interface•requirement•aspect•trace•definition•realisation•function•

Properties:

description: [string] Descriptive body of text for the given element.

remark: [string] General remark or more extensive information.

tag: [string] Comma separated list of tags which indicate some property of the given element.

invariant: [string] Conditions unaffected by the behaviour of the given element.

child: [identifier] Hierarchical child of the given element.

input: [string] Input consumed by the given element.

postcondition: [string] Condition resulting from the given element’s behaviour.

precondition: [string] Precondition for correct behaviour of the given element.

output: [string] Output produced by the given element.

parent: [identifier] Hierarchical parent of the given element.

event Element

Description:

Definition of a dynamic event. May be a step within a broader function or cause a transition between states.
Events may be composed as trees, with an event also entailing all of its children. Decisions can be expressed
with the condition property; unmet conditions entail the alternative (property) children instead of default
children.

Relations:

fmea:cause•aspect•trace•function•transition•

Properties:

description: [string] Descriptive body of text for the given element.

remark: [string] General remark or more extensive information.

tag: [string] Comma separated list of tags which indicate some property of the given element.

return_control: [*] Presence indicates immediate return of control flow

invariant: [string] Conditions unaffected by the behaviour of the given element.

child: [identifier] Hierarchical child of the given element.

postcondition: [string] Condition resulting from the given element’s behaviour.

precondition: [string] Precondition for correct behaviour of the given element.

output: [string] Output produced by the given element.

26

control_only: [*] Presence indicates control flow only

condition: [string] Element is conditional on the specified binary decision.

parent: [identifier] Hierarchical parent of the given element.

alternative: [identifier] Specifies an alternative for an unmet condition.

State Elements State elements capture the stateful behaviour of the system by offering a stateful view of
dynamic elements.

state Element

Description:

Definition of a state.

Relations:

aspect•trace•definition•realisation•transition•

Properties:

description: [string] Descriptive body of text for the given element.

remark: [string] General remark or more extensive information.

tag: [string] Comma separated list of tags which indicate some property of the given element.

child: [identifier] Hierarchical child of the given element.

color: [string] Color associated with element.

parent: [identifier] Hierarchical parent of the given element.

transition Element

Description:

Definition of a transition between states. Takes an ordered pair of states (from,to).

Relations:

state•event•aspect•trace•

Properties:

description: [string] Descriptive body of text for the given element.

remark: [string] General remark or more extensive information.

tag: [string] Comma separated list of tags which indicate some property of the given element.

SBDL Compiler
Command-Line Interface

usage: sbdl [-h] [-m operating_mode] [-o output_file] [--version] [-W {normal,all}] [--hidden] [-i] [-s] [-r] [--skip-errors] [--title TITLE] [-v]
[--manual] [--dump-config config_file] [--load-config config_file] [--list-config] [--set-config config_option config_value] [-D name value]
[--trace [trace_files ...]] [--template template_file] [-fc element_identifier] [-fl element_identifier] [-fch element_identifier]
[-fpa element_identifier] [-fd filter_depth] [-ft element_type] [-fi element_identifier] [-fpr property_name property_value]
[-fg group_identifier] [--custom-directive [compiler_definitions ...]] [--custom-mode [mode_definitions ...]] [--rpc RPC]
[source_files ...]

27

SBDL Version 1.13.1 (DSL Version 25.6). System Behaviour Description Language (SBDL) compiler.
WWW: https://sbdl.dev. Author: contact@sbdl.dev.

Base Arguments:
source_files List of files to compile ["-" implies stdin]

Optional Arguments:
-h, --help show this help message and exit
-m operating_mode, --mode operating_mode

Specify the mode of operation
-o output_file, --output output_file

Specify the name of the output file
--version Print the current version
-W {normal,all}, -w {normal,all}, --warning {normal,all}

Set warning level
--hidden Include hidden files when recursing
-i, --id Include element identifiers in applicable output formats
-s, --source Include source reference in applicable output formats
-r, --recurse Recurse on directories specified in the input list
--skip-errors Do not stop for errors (emit warning instead)
--title TITLE Provide a default title for certain output formats
-v, --verbose Enable verbose output during execution
--manual Show extensive SBDL manual page
--dump-config config_file, --dumpconfig config_file

Dump the internal configuration to a named JSON file
--load-config config_file, --loadconfig config_file

Load the internal configuration from a named JSON file
--list-config, --listconfig

List internal configuration options
--set-config config_option config_value, --setconfig config_option config_value

Set a named configuration option
-D name value, --define name value

Specify a named global definition
--trace [trace_files ...]

Provide a trace file to be processed
--template template_file

Specify a template file for the 'template-fill' mode
-fc element_identifier, --filter-connected element_identifier

Filter everything but those elements with a direct or indirect connection to the specified element identifier (regex) [INCLUDES:
parents/children]

-fl element_identifier, --filter-linked element_identifier
Filter everything but those elements with a direct or indirect connection to the specified element identifier (regex) [EXCLUDES:
parents/children]

-fch element_identifier, --filter-children element_identifier
Filter everything but those elements which are children of the specified element identifier (regex)

-fpa element_identifier, --filter-parents element_identifier
Filter everything but those elements which are parental ancestors of the specified element identifier (regex)

-fd filter_depth, --filter-depth filter_depth
Maximum depth for filters which pursue links (natural number)

-ft element_type, --filter-type element_type
Filter everything but those elements which are of the specified element type (regex)

28

-fi element_identifier, --filter-identifier element_identifier
Filter everything but those elements whose identifiers match the specified string (regex)

-fpr property_name property_value, --filter-property property_name property_value
Filter everything but those elements possessing a named property matching the specified string (regex)

-fg group_identifier, --filter-group group_identifier
Shortcut filter for everything but those elements which are children of the specified group identifier (regex) -- excludes the
group element itself

--custom-directive [compiler_definitions ...]
Specify a file path defining custom compiler directives

--custom-mode [mode_definitions ...], --custom_mode [mode_definitions ...]
Specify a file path containing custom compiler modes

--rpc RPC Remote Procedure Call to be used by RPC-based modes

e.g. "sbdl <file 1> <file 2> <file n>"

Operating Modes

compile: Parse all specified input files, gather SBDL elements, perform semantic checks, apply filters, write SBDL-formatted output
query: Compile inputs, then pretty print the results (after filtering)

csv-matrix: Compile inputs, then write a CSV-formatted representation of the SBDL elements to the output
json-tree: Compile inputs, then write a JSON-formatted representation of the SBDL elements to the output
yaml-tree: Compile inputs, then write a YAML-formatted representation of the SBDL elements to the output

from:csv-matrix: Read SBDL-schema CSV-matrix inputs and write SBDL-formatted output
from:json-tree: Read SBDL-schema JSON-tree inputs and write SBDL-formatted output
from:yaml-tree: Read SBDL-schema YAML-tree inputs and write SBDL-formatted output

openfmea: Compile inputs, then write the FMEA-related content to an OpenFMEA-formatted ouput
openfmea-portfolio: Compile inputs, then write the FMEA-related content to an OpenFMEA Portfolio-formatted ouput, organised by aspect hierarchy

from:openfmea: Read OpenFMEA-formatted input and write SBDL-formatted output
openfmea-csv: Compile inputs, then write the FMEA-related content to a CSV-formatted ouput

network-diagram: Compile inputs, then write a PNG-formatted output, visually representing the network of SBDL elements
requirement-diagram: Compile inputs, then write a SysML-style requirements diagram to rendering-backend-formatted output

aspect-diagram: Compile inputs, then write a SysML-style block diagram to rendering-backend-formatted output (simplified, aspects only)
element-diagram: Compile inputs, then write a SysML-style block diagram to rendering-backend-formatted output (detailed, with properties and relations)

function-diagram: Compile inputs, then write a SysML-style sequence diagram to rendering-backend-formatted output
state-diagram: Compile inputs, then write a SysML-style state diagram to rendering-backend-formatted output

usecase-diagram: Compile inputs, then write a SysML-style use-case diagram to rendering-backend-formatted output
template-fill: Compile inputs, then provide an object, 'sbdl', in a Jinja parsing environment and apply it to the specified template file

rpc: Compile inputs, then transmit to the RPC server for processing by the specified RPC (see --rpc)

Compilation CLI Examples

The full list of the SBDL compiler’s modes of operation can be found in the Command-Line Interface section;
this section will demonstrate some examples of how to use these modes.

Compile Inputs The core mode of the compiler is to compile its input arguments. This consists of the
following steps:

1. Identify all input files (potentially recursively)
2. For each input file: extract its SBDL statements
3. Parse all extracted SBDL statements into a model representation
4. Verify the correctness of the model (including relations)

29

5. Write a single SBDL-native output file containing the aggregation of all inputs

This can be achieved with the following command-line:

sbdl -m compile -r input-file input-dir -o output.sbdl

The above command is useful as a basis for general executions of the SBDL compiler. In the example
command there are the following arguments:

sbdl: Command to invoke the compiler.

-m: Switch to specify a mode.

compile: Name of the desired mode.

-R: Recurse on directories when identifying input files.

input-(file|directory): Name one or more input files or directories.

-o: Switch to specify and output file.

output.sbdl: Name of a output file.

Because compile is the default mode of the SBDL compiler, and STDOUT is the default output, the command
above can be simplified to the following:

sbdl -r input-file input-dir

(compiled SBDL will then be written to STDOUT)

Importantly, the compiled output can then be used as an input for further SBDL compiler modes, to simplify
further invocations and also avoid repeating the aggregation process.

Generate Model Diagram Most invocations of the SBDL compiler follow the same form. The compile
inputs example demonstrated this form; this section shows a variation of that form for generating an aspect
diagram.

sbdl -m aspect-diagram output.sbdl -o aspect-diagram-output.png

The mode switch has been changed to specify ‘aspect-diagram’ and the output file has been adjusted to the
desired PNG target. ‘output.sbdl’ is used (from the previous compile command) as input.

Templating Output Some SBDL compiler invocations require additional parameters, for example the
templated output:

sbdl -m template-fill output.sbdl -o output.html --template template.html

In this case, the ‘–template’ switch is used to specify to which template the parsed SBDL should be applied.

For a concrete exploration of using SBDL models in document templates, see the worked example.

Compiler Directives

Available compiler directives:

(Format: Name: [arg1,arg2,. . . -> return] Description)

• SELF : [-> SBDL_Element] Element object for the current element (for internal cross-referencing)
• SELF_ID: [-> string] Identifier of the current element (when embedded within an element property)
• SELF_PROP: [-> string] Identifier of the current element’s property (when embedded within an

element property)
• ABORT : [string ->] Abort compilation with error

30

• MESSAGE : [string ->] Show a message (on stdout) during compilation
• MSG: [string -> string] Show a message (on stdout) during compilation and replace occurence with the

message inline
• DATE : [-> string] Today’s date
• USER: No Description
• ADD: [int, . . . -> int] Sum of arguments
• SUB: [int, . . . -> int] Subtraction of subsequent arguments from the first argument
• EQUAL: [val, val ->] Raise a compiler error if two value arguments are not equal
• CONCAT : [string, . . . -> string] Concatentate string arguments
• INSTLI : [string, . . . -> string] Index a list of string terms separated by whitespaces
• SHOW_ALL: [->] Show a message (on stdout) displaying all defined macros
• RMCOM : [string -> string] Remove comments from a string
• MKID: [string -> string] Make a given string a valid SBDL identifier
• DFP: [string -> string] Return a string defining a description as the previous line
• REQUIRE_DSL_VERSION : [string ->] Raise a compiler error if the DSL version is not at least equal

to the argument
• REQUIRE_COMPILER_VERSION : [string ->] Raise a compiler error if the current compiler version

is not at least equal to the argument
• REQUIRE_DSL_VERSION_EXACT : [string ->] Raise a compiler error if the DSL version is not

exactly equal to the argument
• PATH : [-> string] Path of the current file
• FILE : [-> string] Name of the current file
• DIR: [-> string] Name of the current directory
• CONTEXT : [-> string] Context string (embedded statement)
• =LINE : [-> string] Current line (embedded statement)
• -LINE : [-> string] Previous line (embedded statement)
• +LINE : [-> string] Next line (embedded statement)
• LINE : [-> string] Current line number
• IMPORT : [string ->] Import contents of another SBDL file
• DEFINE : [string, string->] Create a key,value pair compiler definition
• DEFINE_APPEND: [string, string ->] Append to a named definition
• DEFUNC : [string, string, string ->] Create a definition from the result of a named compiler function

application
• DEFIND: [string, string, string ->] Create a definition from the result of indexing another name

definition
• DEFINEF : [string, string ->] Create a definition from the contents of a named file
• DEFINEFH : [string, string ->] Create a definition from the hash of the contents of a named file
• EXPAND: [string -> string] ‘Expand’ and sanitize a named definition
• PARSED_ELEMENTS : [->] Set of parsed elements (useable only programatically)
• GENERATED_ELEMENTS : [->] Set of output elements generated by other directives (useable only

programmatically)
• SYNTHETIC_ELEMENT : [->] Synthetic object class reference, used to generate elements dynamically

(usable only programmatically)
• CROSS_REFS_AVAILABLE : [-> bool] Indicates whether cross references are available
• EXTEND_CAUSE : [string, int -> string] In a failure cause to indicate it extends a name higher-level

failure cause, args: [higher-cause, detectability] return [failure-mode-identifier]
• CPPCLASS : [-> string] Most recently defined C++ Class (embedded statement)
• PYCLASS : [-> string] Most recently defined Python Class (embedded statement)
• CFUNC : [-> string] Most recently defined C/C++ function (embedded statement)
• PYFUNC : [-> string] Most recently defined Python function (embedded statement)
• PL_START : [->] Startup the Prolog environment (required at least once to use Prolog directives;

31

indempotent)
• PL_ASSERT : [string ->] Assert the truth of a Prolog query (throw a compiler error if not)
• PL_ASSERT! : [string ->] Assert a Prolog query as false (throw a compiler error if not)
• PL_COMMAND: [string ->] Issue a Prolog statement
• PL_TRACE_FILE : [string->] Write all generated Prolog facts, assertions and commands to a named

file (for external use in Prolog)
• PL_RESULT_OUTPUT : [->] Output the result of Prolog assertions to stdout

License
The SBDL compiler and tools are provided under a modified BSD-3-Clause-based license.

FAQ and Issue Reporting
Frequently Asked Questions

Q: What is that bug-looking mascot-thing?

That’s a generative-AI interpretation of a ‘speedy-beetle’, or ‘speedle’ (SBDL).

Q: Who is the creator/maintainer of SBDL?

SBDL is created and maintained by Michael Hicks.

Q: How can I use the SBDL compiler as a Python library to interact with the SBDL language directly?

A fuller SBDL Compiler API will follow the first stable release.

For now, have a look at this code example of using the SBDL compiler API to read a set of SBDL files and
interact with the parsed and verified elements.

(HINT: make use of Python’s introspection facilities to see what can be done with element objects)

Q: I’m having problems with certain diagrams rendering improperly with the PlantUML backend. How can I
fix them?

First try installing a tested version of PlantUML.

If the problems persist, report an issue (below).

Issue Reporting

Issues can be raised by sending an email to issues@sbdl.dev. Upon receipt, a trackable issue is automatically
created, and a confirmation reference is returned to the sender.

32

https://sbdl.dev/LICENSE.md
https://mahicks.org
https://codefile.io/f/XHRwYx1T8K
https://github.com/plantuml/plantuml/releases/tag/v1.2023.1
mailto:issues@sbdl.dev?subject=%3CENTER%20ISSUE%20SUBJECT%20HERE%3E&body=%3CENTER%20DESCRIPTION%20HERE%3E

	Overview
	Quick Start
	SBDL Language
	Metamodel Reference
	SBDL Compiler
	License
	FAQ and Issue Reporting

